Bit-TTT aims to bridge the gap between “Ultra-efficient Inference” and “Adaptive Learning”. We combine two technologies into a single, portable runtime:
{-1, 0, 1} for extreme efficiency.The project follows a Rust-First, Python-Compatible architecture.
graph TD
A["Python (PyO3)"] -->|Direct Bindings| B["Rust Core Engine"]
B -->|Candle (SIMD/AVX)| C["CPU / GPU"]
subgraph Rust Core
D["BitLlama (Model)"]
E["TTT Layer (Fast Weights)"]
F["BitLinear (Ternary Weights)"]
end
B --> D
D --> E
D --> F
| Module | Role | Tech Stack |
|---|---|---|
| crates/core_engine | Neural Network Logic | Candle tensor framework. Supports CPU/CUDA. |
| crates/cortex_rust | Python Interface | PyO3. Exposes BitLlama class directly to Python. |
| legacy | Deprecated Interop | Old extern "C" / ndarray implementation (isolated). |
W_state updated via Gradient Descent (online learning).--no-default-features to remove Python/PyO3 dependencies for embedded use.cpu (AVX) and cuda (GPU) via simple config switch.